

Pose from Shape: Deep Pose Estimation for Arbitrary 3D Objects

BAYC CARDIFF 2019

Yang Xiao, Xuchong Qiu, Pierre-Alain Langlois, Mathieu Aubry, Renaud Marlet LIGM (UMR 8049), Ecole des Ponts, UPE http://imagine.enpc.fr/~xiaoy/PoseFromShape/

Motivation

Task: Pose estimation

Challenge: Testing on unseen arbitrary objects

Key findings:

- Using object shape improves pose estimation
- Using object shape enables category generalization

Key Ideas

Pose estimation from shape and image

Encode the shape and orientation

(b) Rendered views

Results

Results on unseen objects of ObjectNet3D

Quantitative results

ObjectNet3D (supervised category)	Accuracy	
StarMap [4]	56	
Without shape (ours)	64	
With point cloud (ours)	68	
With rendered views (ours)	73	
ObjectNet3D (novel category)	Accuracy	
StarMap [4]	42	
Without shape (ours)	50	
With point cloud (ours)	59	
With rendered views (ours)	62	

Pascal3D+ (category-specific)	Accuracy	Error
Viewpoints and keypoints [5]	80.75	13.6
Render for CNN [6]	82.00	11.7
Grabner [7]	83.92	10.9
Pascal3D+ (category-agnostic)	Accuracy	Error
Grabner [7]	81.33	11.5
StarMap [4]	81.67	12.8
With rendered views (ours)	82.66	10.0

Results on unseen objects of LINEMOD

Ours

Refine

Application in ImageNet to unseen categories

GT

heavily cluttered scenes. ACCV (2012)

- A simple network combining shape and image
- Performance boost on seen and unseen categories
- Application to arbitrary objects "in-the-wild"

- [1] ObjectNet3D: A large scale database for 3D object recognition. ECCV (2016)[2] Beyond PASCAL: A benchmark for 3D object detection in the wild. WACV (2014)[3] Model based training, detection and pose estimation of texture-less 3d objects in
- [5] Viewpoints and keypoints. CVPR (2015)
 [6] Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views. ICCV (2015)
- [6] Render for CNN: Viewpoint estimation in images using CNNs trained with rende [7] 3D pose estimation and 3D model retrieval for objects in the wild. CVPR (2018)

[4] Starmap for category- agnostic keypoint and viewpoint estimation. ECCV (2018)